

American Institute of Aeronautics and Astronautics

1

The Application of Hardware in the Loop Testing for

Distributed Engine Control

George L. Thomas1

N&R Engineering and Management Services, Inc., Parma Heights, OH, 44130, USA

Dennis E. Culley2

NASA Glenn Research Center, Cleveland, OH, 44135, USA

and

Alex Brand3

Sporian Microsystems, Inc., Lafayette, CO, 80026, USA

The essence of a distributed control system is the modular partitioning of control function

across a hardware implementation. This type of control architecture requires embedding

electronics in a multitude of control element nodes for the execution of those functions, and

their integration as a unified system. As the field of distributed aeropropulsion control moves

toward reality, questions about building and validating these systems remain. This paper

focuses on the development of hardware-in-the-loop (HIL) test techniques for distributed aero

engine control, and the application of HIL testing as it pertains to potential advanced engine

control applications that may now be possible due to the intelligent capability embedded in

the nodes.

Nomenclature

BPPD = Blade passing pressure disturbance

C-MAPSS40k = Commercial modular aeropropulsion system simulation, 40,000 lbf thrust class

DEC = Distributed engine control

DECSS = Distributed engine control system simulator

FADEC = Full authority digital engine control

Fn = Net thrust produced by engine

HPC = High pressure compressor

HIL = Hardware-in-the-loop

HPT = High pressure turbine

LPC = Low pressure compressor

LPT = Low pressure turbine

Nf = Low pressure shaft speed (rpm)

Nc = High pressure shaft speed (rpm)

P3 = Total pressure at station 3 (at HPC exit) (psi)

Ps3 = Static pressure at station 3 (at HPC exit) (psi)

P3HB = High bandwidth total pressure at station 3 (psi)

PLA = Power lever angle

Wf = Fuel mass flow rate (lbm/s)

1 Controls Engineer, george.l.thomas@nasa.gov
2 Research Engineer, dennis.e.culley@nasa.gov, AIAA Senior Member
3 Electrical Engineer, abrand@sporian.com

https://ntrs.nasa.gov/search.jsp?R=20170000941 2020-05-10T04:43:42+00:00Z

mailto:george.l.thomas@nasa.gov
mailto:dennis.e.culley@nasa.gov
mailto:abrand@sporian.com

American Institute of Aeronautics and Astronautics

2

I. Introduction

HERE is a desire in the jet propulsion control industry to design engines that feature distributed control, which

will be implemented using networks of smart transducers. Distributed control has been an exceedingly difficult

problem due to the extreme temperature environment of the engine and the subsequent implications for system weight.

The barrier has been high-temperature electronics, which has the ability to make the weight trade more favorable. As

this high-temperature capability moves toward reality, questions about building and validating these systems remain.

In modern production engines, wiring harnesses are typically used to connect the analog signals from control elements

(i.e., sensors and actuators) on the engine to the full-authority digital electronic controllers (FADECs) that regulate

them. In the case of pressure signals, pneumatic tubes are plumbed from the engine sensing location to the pressure

transducer housed in the engine control unit (ECU). These cables and tubes can be long and heavy, and the

interconnects can pose reliability concerns, which motivates placing the electronics and transducers as close as

possible to their respective stations on the engine.1 The lack of availability of high-temperature electronics makes it

difficult to place these devices in the most desirable locations, however solutions in this field are progressing.1 This

rearrangement of electronics from the FADEC enables digitization at locations closer to their respective signal sources,

improving the signal quality and bandwidth. Signal lag is especially characteristic of long runs of pneumatic tubing,

and so the advent of distributed engine control will significantly affect the bandwidth of pressure signals that can be

measured from the engine. These embedded electronics may thus provide new information for control, thus spurring

development of advanced control technologies. Applications such as active surge control and active combustion

control may become realizable, because information about the stability of the operating state of various engine

components is available in the high frequency content of engine pressure data.

 Some applications of the high bandwidth sensing and actuation techniques that will be enabled by distributed

engine control (DEC) have already been explored. Bright et al.2 used stator vanes with flow injection capabilities to

affect the flow separation occurring on these vanes—in that work, the authors observed the correlation of flow

separation and the fundamental component of blade passing pressure disturbances, as measured by piezoelectric

pressure transducers mounted at the tips of the flow control vanes. Mitigation of stator vane flow separation is useful

for reducing loss (increasing efficiency) and postponing the onset of surge or stall. Further, Wadia et al.3 presented an

autocorrelation-based metric that captures stall margin information; that work is based on the observation that as a

compressor approaches stall, the magnitudes of the high frequency components of the pressure in the compressor will

vary in an increasingly erratic fashion. The work published in the current paper seeks to lay a foundation for future

tests of various DEC concepts and devices, and so the following subsection will introduce the specifics of this work.

A. Hardware-in-the-Loop Testing of DEC Devices

 Relative to traditional hardware-in-the-loop (HIL) simulations, two significant issues must be overcome. First, the

number of active control elements has significantly increased in the distributed architecture. In a centralized

aeropropulsion control system, the FADEC is the only piece of control logic hardware being tested, as all the analog

sensor signals and actuator loads are emulated in the HIL test bed. Distributed control presents a potential multitude

of active hardware elements that may or may not be available at any given time. Second, the embedded processing in

a smart node provides the potential for high bandwidth capabilities that far exceed the bandwidth of models used for

traditional aeroengine control design. Developing methodologies to emulate these wide bandwidth signals in order to

more fully test distributed nodes is a significant problem.

HIL testing of DEC components is similar to HIL testing of general hardware components in that it is often

preferable to perform bench or unit testing on individual components before doing a system-level, integration type of

HIL test. Best practice dictates that testing should be an integral part of product development, and most of the tests

conducted throughout development are unit-level tests. Once the individual components are satisfactory, system-level

tests are performed, as they can determine if a fully integrated system works as intended. If such tests determine that

the integrated system does not perform as intended, then the test results can often help identify and solve system-level

integration issues. This work is concerned with a system-level test of a particular smart sensor integrated into a

particular test loop. Unit tests of individual functions of this smart sensor have been performed at NASA before

beginning this work, but the results of this previous unit testing are mainly proprietary and thus remain unpublished.

T

American Institute of Aeronautics and Astronautics

3

B. Objectives and Outline

There are two main objectives: 1) extend the wide bandwidth signal generating capability from a low order plant

model, and 2) demonstrate a modular HIL test system that includes the ability to swap node function between hardware

and simulation.

The development of a proof of concept HIL test is described in Section II, and the results of this test are given in

Section III. Section IV provides discussion of an initial ancillary model of the high-bandwidth station 3 pressure (P3)

signal that is to be used for future work. Finally, conclusions and future work directions are given in Section V.

II. HIL Test Implementation

A. HIL Test Tools and Components

This paper explores concepts for testing smart, distributed engine components. The C-MAPSS40k engine system

is used as the platform for the development of these concepts. C-MAPSS40k is a high fidelity model of a high bypass,

40,000 lbf thrust class turbofan engine written in MATLAB/Simulink, with some library components written in the C

language.4 It is well suited for control systems research due to its transparency and ease of use, however, the

architecture of C-MAPSS40k was not designed specifically with DEC system modeling in mind. To facilitate HIL

testing of DEC systems, a real-time, distributed version of the C-MAPSS40k engine simulation was adapted from

previous work.5

All of the C-MAPSS40k simulation runs conducted in this work use a simulation time step of 15 ms. For the

purposes of the HIL tests described in this work, signal bandwidth distinctions are based on this time step value.

Specifically, low bandwidth signals are defined as those that can be represented in a simulation running at 15 ms time

steps. Due to the Nyquist sampling theorem, this means signals with a bandwidth, f = 1 / (2 * 0.015) = 33.3 Hz. Audible

compressor stall precursors can be detected by the human ear.6 For the purposes of this work, high bandwidth signals

are thus defined in this work to be signals with a bandwidth between 33.3 Hz and 20 kHz.

The HIL test platform computer system at NASA Glenn Research Center used for this work is called the distributed

engine control system simulator (DECSS), which is a computer system intended for real-time distributed engine

control research. The DECSS is a Concurrent Computer Corporation iHawk computer with 16 CPU cores, 32 GB of

RAM, and peripherals such as a real-time clock, various analog and digital I/O, and transceivers for a variety of serial

communication protocols including UDP over Ethernet, RS232, RS485, and CAN. It runs the Concurrent Red Hawk

Linux operating system, which is based on CentOS/Red Hat Enterprise Linux with added real-time computing

capabilities. The Concurrent development environment for real-time simulations is called Simulation Workbench (or

Sim Workbench), and is the integrated development environment (IDE) that these HIL tests are developed in.

A smart pressure sensor that has wide-bandwidth capability is under development by Sporian Microsystems. This

device has been made available to NASA for use in proof of concept HIL tests of DEC systems. This device is

composed of a prototype smart node, as well as a proxy pressure transducer intended to interface the smart node to a

HIL simulator. The smart node is a collection of electronics that digitizes and processes the pressure sensor data, and

transfers that data to other smart nodes over a digital communication bus. The proxy pressure transducer replaces a

hardware pressure transducer. Specifically, it takes an analog voltage input and interprets it as a simulated pressure

signal. A proxy transducer is necessary, as the DECSS is a dry test bed. That is, there are no physical analog signals,

such as fluid pressures, to measure. Electrical analogs of pressures are generated via an analog voltage output card

instead. This allows for a much simpler and safer test environment at the expense of some of the test fidelity. This is

acceptable in this case, as the main objectives are to demonstrate a proof-of-concept HIL test of a DEC smart node,

and to test the processing capabilities and the algorithms in the smart node; they do not include testing the operation

of any particular pressure transducer. The smart node and the proxy pressure transducer are combined and treated as

a single black box device for the purposes of the HIL test in this work. This combined smart sensor device is considered

to be the device under test (DUT). Note that “smart sensor” refers to this combined device throughout this paper

whereas “smart node” refers to the electronics, independent of the proxy pressure transducer.

B. High-Level Formulation of HIL Test

In order to further describe this HIL test, a block diagram of the components in the test loop is shown in Figure 1.

This diagram depicts the following: the DECSS computes and generates an analog output voltage representing P3

data from the C-MAPSS40k engine system simulation. This signal is fed into the analog input of the proxy pressure

transducer. This proxy transducer’s impedance varies with its analog input voltage just as a real transducer’s

impedance would vary with pressure input, so in order to obtain pressure data, the smart node electronics block

samples the proxy pressure transducer as it would a real pressure transducer. The smart node then computes fast

Fourier transform (FFT) and time domain pressure data from the response of the proxy pressure transducer, and these

American Institute of Aeronautics and Astronautics

4

data are read back by the DECSS via a UDP-based communication interface. The data from the smart sensor are

interpreted as a sensed P3 signal, which is used for closed-loop control in the engine simulation. This means that the

smart sensor is used in the simulation loop, and thus the DECSS and smart sensor together form a HIL system. Further,

the fact that the smart sensor architecture uses a proxy pressure transducer is useful, because it means that a HIL test

could be performed where the smart node instead connects to a real pressure transducer.

The smart node is capable of making multiple measurements, including wide bandwidth total pressure as well the

traditional low bandwidth static pressure. This present HIL test work is limited to sensing station 3 static pressure, or

Ps3. This is done to obtain preliminary results that prove the concept of the use of the DECSS for HIL tests by

replacing a sensor model used by the original C-MAPSS40k controller with a hardware device. The C-MAPSS40k

controller is designed to use Ps3 in its Wf/Ps3 (i.e, fuel flow rate/Ps3) min limiter, which protects low-pressure

compressor surge margin and fuel-to-air ratio design limits. It also features Ps3 min and Ps3 max limit logic. The

value of this work is that, by performing the steps necessary to replace a simulated Ps3 sensor with smart sensor

hardware and running a HIL test, one can extrapolate a general procedure for HIL testing of DEC smart nodes.

Figure 1. Block diagram of the HIL test system composed of the DECSS and DUT.

American Institute of Aeronautics and Astronautics

5

A block diagram showing how the smart sensor integrates into the distributed C-MAPSS40k system running on the

DECSS is shown in Figure 2. Note that the switch shown in this figure is implemented as an if statement that checks

for a HIL test enable flag in the smart node UDP communication C code. If the flag is set, then the simulated Ps3

sensor data is blocked and overwritten with the data read back from the smart sensor via UDP; otherwise, the simulated

Ps3 sensor data is passed through and used for feedback.

C. Design of HIL Test using Sim Workbench

Sim Workbench provides useful, drag-and-drop style graphical tools for taking Simulink-based simulation

systems, building them for the Concurrent Red Hawk platforms (in this case, the DECSS), and creating and running

real-time test schedules. In order to create a test scenario in Sim Workbench, a real-time database (RTDB) must first

be created. An RTDB is a data structure that is used to share data between the different programs running concurrently

in a given test.

Figure 2. Block diagram of the distributed C-MAPSS40k simulation as it runs on the DECSS. A switch is

used to control whether the simulated Ps3 signal or the Ps3 signal from the smart sensor is used for

controller feedback. The items within the box drawn with a thick dashed line are all simulation or

hardware components contained within the DECSS.

American Institute of Aeronautics and Astronautics

6

After creating the RTDB, the programs that are part of the test must be included into the Sim Workbench project

and built. There are a variety of programming languages that can be used to create Sim Workbench tests, but in the

case of this HIL test, these programs are the distributed C-MAPSS40k Simulink block diagrams (individual sensors

and actuators, the engine plant, and control system), as well as some C programs used to interface the C-MAPSS40k

simulation with the smart sensor hardware, generate input profiles, and save simulation output variables. Simulink

programs are developed on a Windows machine and pushed over the local area network (LAN) to the DECSS, where

they are built. During this build process, RTDB variables are created based on Simulink block naming conventions;

these variables are the only link between individual programs in a test.

After the build process, a Sim Workbench “test” must be created; a “test” is a schedule that describes the execution

order of programs in each simulation time step. In the Sim Workbench IDE, this is accomplished by adding blocks

that correspond to individual programs, and drawing arrows connecting them that indicate data dependency

relationships between them (e.g., the control system depends on the RTDB variables containing output data from each

of the sensors). Once created, the test can be run. Sim Workbench also includes tools for creating graphical user

interfaces (GUIs) that help users run tests and observe test variables, although these GUIs are not strictly necessary to

Figure 3. Block diagram of the Sim Workbench test used in this work, showing the programs that constitute

this test (in boxes). This diagram is drawn in a similar fashion to the “tests” screen in Sim Workbench.

Programs written in the C language are indicated with the text, “(C Code).” All other programs are

generated from Simulink model reference blocks. Note that the arrows in this figure indicate data

dependenency in the simulation loop. This means that a program that points to another program will be

scheduled to execute first, before the program it points to, because the second program (the one being

pointed to) needs the results of the first program in order to run.

American Institute of Aeronautics and Astronautics

7

run tests. A block diagram showing the construction of the Sim Workbench test used for this work is included in

Figure 3.

This diagram does not show the frequency divider, frequency multiplier, or other multi-rate controls that are

available in the test creation screen of the SimWorkbench IDE, as these were not used to create the test used in this

work. Note that the programs corresponding to the blocks in Figure 3 each execute once per scheduler frame (i.e.,

simulation time step).

The first block to execute each frame is the “Simulation Inputs” block, which drives the RTDB variables containing

simulation inputs. Next to execute are the sensor blocks and the block that generates controller setpoint values from

the power lever angle (PLA) profile (for either the engine pressure ratio or fan speed (EPR or Nf) controller). The

sensors and setpoint blocks all execute in parallel on separate processor cores. Note that the smart sensor UDP block

represents the C code that reads pressure data from the smart sensor via its UDP command application program

interface (API). If the HIL test enable flag mentioned regarding the switch in Figure 2 is set, the smart sensor UDP

block will overwrite the Ps3 simulation data with the data obtained from the smart sensor. If the HIL enable flag is set

to false, the Ps3 simulation data will pass through and will be used for closed-loop control. After the sensors execute,

the control system executes, and then the actuators, and then the engine plant model. Finally, the analog output signal

representing Ps3 is generated. This drives the smart sensor’s pressure signal for the next time step. The next section

describes how this test was conducted and shows the results obtained from it.

III. Preliminary HIL Test Results

For this HIL simulation, a burst and chop power lever angle (PLA) profile is provided to the engine at sea-level-

static (SLS), which corresponds to an altitude of 0 ft, a Mach number of 0, and a standard-day temperature of 59 °F.

Figure 4 compares data from a baseline simulation (the distributed C-MAPSS40k with a software model of a Ps3

sensor) indicated with blue lines, and data from the HIL test with the hardware smart sensor shown with red dashed

lines. Specifically, the data shown in the plot are net thrust, fuel flow rate, actual Ps3 (i.e., the truth value of Ps3

produced by the C-MAPSS40k engine plant) and sensed Ps3 (i.e., either the output of C-MAPSS40k’s Ps3 sensor

component, shown in blue, or the data read back from the smart sensor via UDP, shown as a red dashed line).

 The data from the HIL case matches the simulation case well, especially during the trimming (0 to 5 s), throttle

burst (5 to 10 s), and high throttle steady-state (10 to 15 s) periods of simulation. The only noticeable discrepancies

before 15 s are in the sensed Ps3 plot. These are expected, because the smart sensor’s performance is not exactly the

same as that of the Ps3 sensor contained in the C-MAPSS40k simulation.

Small differences in the net thrust (Fn), Wf, and actual Ps3 data can be seen in the plots in Figure 4 during decel

(15 s to end of simulation)—before decel, the data match perfectly for these variables. This is because sensed Ps3

only begins to affect the closed loop response of the system when one of the Ps3-based safety limiters becomes active,

in this case, the Wf/Ps3 min limiter. The cause of the differences is that there is more Ps3 sensor signal lag in the HIL

test case than there is in the baseline (simulated sensor) case. This may be caused by one of several things. First, the

UDP communication channel between the smart sensor and the DECSS may be significantly slower than the

communication channel that will be used in a practical implementation. Another is that the lag may be due to dynamics

in the smart node, rather than delay in the communication channel. In general, the effects of the increased Ps3 signal

lag in the HIL test case are small. A pilot would not likely notice a difference in the thrust response, and, more

0 5 10 15 20 25 30
0

2

4
x 10

4

Time [s]
F

n
e

t
[l
b

f]

0 5 10 15 20 25 30
0

2

4

Time [s]

W
f
[l
b

/s
]

0 5 10 15 20 25 30
0

200

400

Time [s]

S
e

n
s
e

d
 P

s
3

 [
p

s
i]

0 5 10 15 20 25 30
0

200

400

Time [s]

A
c
tu

a
l
P

s
3

 [
p

s
i]

0 5 10 15 20 25 30
0

2

4
x 10

4

Time [s]

F
n

e
t
[l
b

f]

0 5 10 15 20 25 30
0

2

4

Time [s]

W
f
[l
b

/s
]

0 5 10 15 20 25 30
0

200

400

Time [s]

S
e

n
s
e

d
 P

s
3

 [
p

s
i]

0 5 10 15 20 25 30
0

200

400

Time [s]

A
c
tu

a
l
P

s
3

 [
p

s
i]

Figure 4. Simulation results showing net thrust, fuel flow rate, sensed Ps3, and actual Ps3, for distributed

C-MAPSS40k with a simulated Ps3 sensor (solid blue line), and with the smart sensor hardware in the

control loop (dash-dotted red line).

American Institute of Aeronautics and Astronautics

8

importantly, the safety margins are all protected successfully in both cases. These results demonstrate that the smart

node can be used successfully in a C-MAPSS40k style engine.

IV. P3HB Signal Model Development

This section discusses preliminary modeling and simulation results in MATLAB/Simulink of a closed-loop active

surge control scheme that estimates HPC surge margin from high bandwidth P3 data. This work is discussed in

anticipation of upcoming high bandwidth HIL tests of the smart node. As mentioned previously, the update rate of C-

MAPSS40k is too slow to include the higher frequency dynamics characteristic of surge precursors. Therefore, an

ancillary high bandwidth P3 model is added to C-MAPSS40k that incorporates high pressure compressor (HPC) surge

margin information into the P3 signal in the form of pressure disturbances created in the HPC as the blades of the

HPC rotor pass by the HPC stator vanes. These are referred to as blade passing pressure disturbances (BPPDs)

throughout this paper. To model BPPDs, it is first assumed that a single smart P3 sensor is present on the engine and

that it detects BPPDs from only one stage of the HPC. It is then assumed that these pressure disturbances are sinusoidal

and all of the noise present in the signal can be lumped together and assumed to be zero-mean additive white Gaussian

noise, N(0, σ2). Further, it is assumed that the frequency of the BPPD signal is proportional to the speed of the high

pressure or core shaft, Nc. Further, the magnitude of the sinusoidal BPPD signal is assumed to be related to the HPC

surge margin values from the underlying C-MAPSS40k model via a smooth nonlinear function. These assumptions

are made, considering both first principles and qualitative observations of AC coupled compressor data (i.e., with the

average signal value or DC component removed).6

One possible model for a high bandwidth P3 signal that satisfies these assumptions is

𝑃3𝐻𝐵 = 𝑃𝑠3 + (
𝑘2[1 − tanh(𝑘3 ∗ (SMHPC − 𝑘4))]

2
∙ cos(𝑘1 ∙ 2𝜋𝑁𝑐 ∙ 𝑡)) + N(0, 𝜎2) (1)

where P3HB is the ancillary high bandwidth P3 signal model, SMHPC and Nc are the HPC surge margin and core speed

variables, respectively, from C-MAPSS40k, and k1, k2, k3, k4, and σ are all model parameters. k1 is the proportionality

constant relating Nc to the BPPD signal frequency, k2 is the maximum magnitude that the BPPD signal will obtain as

HPC surge margin is varied, k3 controls how quickly the BPPD magnitude rolls off as HPC surge margin is decreased,

and k4 controls the HPC surge margin value at which the BPPD signal will have half its maximum magnitude. Further,

tanh(∙) represents the hyperbolic tangent function. The tanh(∙) function is chosen as the nonlinearity that relates HPC

surge margin to the BPPD magnitude because the true relationship is unknown, although it is assumed to have a

smooth sigmoidal shape—the tanh(∙) function is chosen as it is representative of the general class of sigmoidal

functions.

Problems with the assumptions above include the fact that a real HPC may have many stages with different

numbers of blades, and this means that there may be many harmonics present in the pressure signal measured at any

given location in the HPC. Further, surge and pre-surge are phenomena with spacial dynamics, and so a zero-

dimensional model like this one (i.e, C-MAPSS40k with a high bandwidth ancillary model driven by low bandwidth

simulation data) can only approximate them.

A simplistic approach to implementing this model for purposes of simulating the smart P3 sensor purely in

software is to generate the high-bandwidth pressure signal in the time domain and use it as feedback where necessary

in the simulation. This is not desirable, because the simulation step size would need to be lowered below the Nyquist

sampling period given the highest signal frequency to be represented in the simulation, and so this would make the

simulation run prohibitively slowly. To avoid this, the following approach is used: at every simulation time step, a

short window of the time domain high bandwidth pressure signal is generated, and the FFT of the signal is computed

over this window. This window comprises M samples, using a sampling period of TS. Then, an estimate of the BPPD

signal magnitude can be computed by sampling the FFT data at frequency k1∙Nc.

The FFT-based approach for modeling the BPPD magnitude sensor is chosen over simpler approaches (such as a

single nonlinear function that takes in simulation variables and directly outputs the BPPD magnitude), because it more

closely reflects operation of the hardware HIL system using the smart pressure sensor. FFT data is used in the

algorithms running in the physical smart sensor to estimate BPPD magnitude, and so the FFT step should not be

omitted from the BPPD sensor simulation model as doing so constitutes neglecting the errors introduced by the

quantization inherent in FFT binning.

In order to use these BPPD signal magnitudes for closed-loop control, an observer model must be made that

predicts the underlying system state (HPC surge margin) using sensed data (BPPD magnitude). For preliminary control

studies, it is proposed that a simple polynomial curve fit model will suffice. Such a model is made from empirical

simulation data obtained by running C-MAPSS40k with the ancillary P3HB and smart sensor models, and fitting a

American Institute of Aeronautics and Astronautics

9

curve that relates the resulting FFT sample magnitude (estimated BPPD magnitude) to HPC surge margin. This

formula obtained via curve fitting is used to obtain HPC surge margin estimates for feedback in the simulation.

Additionally, a maximum Wf limit regulator designed to protect HPC surge margin during throttle transients is

constructed in a similar fashion to the other limit regulators that exist in C-MAPSS40k.7 One such limiter that

generates a maximum fuel flow limit by comparing the current HPC surge margin estimate (computed from BPPD

magnitude) with a desired surge margin limit value has been created and added to C-MAPSS40k as part of this

modeling development. Figure 5 shows a block diagram of the modeling components added to C-MAPSS40k, as

described above. The limit regulator logic is not shown, as this logic is analogous to that of other limit regulators in

baseline C-MAPSS40k.7 Note that fs and Ts, (where fs = 1 / Ts) in this diagram are the sampling frequency and

sampling period of the high bandwidth system.

Figure 5. Block diagram of the ancillary modeling components added to C-MAPSS40k to enable BPPD-

based active HPC surge control, showing the inputs from C-MAPSS40k in the top left, and the estimated

HPC surge margin output in the bottom right. The variable, u, in the blocks in this diagram refers to the

input signal of that particular block.

1

American Institute of Aeronautics and Astronautics

10

Plots of representative simulation results for the P3HB-based active surge control simulation are shown in Figure

6. Note that these results were obtained completely in simulation without the use of sensor hardware. A HIL test using

physical smart node hardware is reserved for future work. The simulation condition for this test is a burst-and-chop

PLA profile at SLS. The model parameters for this simulation were chosen as follows: number of blades, nB = 20, k1

= nB/60 [blades/(seconds/minute)], k2 = 1 [psi], k3 = 0.2 [-], k4 = 12 [% HPC surge margin], Ts = 100 [µs], fs = 10

[kHz], M = 8192 [time steps or bins]. The HPC surge margin limit used in the limit regulator was chosen to be 11%.

These are arbitrary choices, picked to

evaluate the closed-loop system in a general

manner. The number of compressor blades

was chosen to be a small value of 20 so that

the maximum BPPD signal frequency

fMAX = NcMAX * nB, is less than 4 kHz, which

is the maximum signal frequency that can be

resolved by the physical smart sensor being

modeleled in this work.

It was found that a linear model, y(u) =

–- 9u + 18, approximates the relationship

between BPPD magnitude (y) and HPC

surge margin (u) well when the engine is

operating at SLS over transients that

produce HPC surge margins in the

neighborhood of 12%.

Note that the HPC surge margin signal in

Figure 6 shows oscillatory components. This

is because the HPC surge margin limiter is

chattering between active and inactive

states. This behavior can be improved by

tuning the HPC surge margin limiter—the

limiter parameters were simply chosen to

match those from the C-MAPSS40k Nc

acceleration limiter. Also note that the model does not predict surge margins above 20%, however, this is not the goal.

It is most important that the model predict HPC surge margin accurately at values significantly below 20%, where the

HPC approaches surge during throttle burst transients, so that the fuel flow transient can be limited or slowed down

such that a given HPC surge margin can be protected. Note that the HPC surge margin produced by the observer logic

is currently designed at SLS. It can easily be extended to cover the entire C-MAPSS40k flight envelope by scheduling

the observer model parameters as functions of ambient conditions.

Future work involves finding high quality empirical data that relates compressor pre-surge phenomena to the high

frequency components of P3, and using these data to produce and validate a higher fidelity model. Much of the

compressor pressure data showing stall precursors found in the literature is presented as relative, or AC-coupled

pressure data, without information about DC pressure levels, and often without specified units.6 More complete data

would allow more realistic models of pre-surge phenomena to be constructed. Other work to be done on the active

surge control application of the P3HB model includes improvement of the HPC surge margin observer and limit

regulator models to enhance the efficacy of the controller and ensure that HPC surge margins are protected consistently

over the entire flight envelope.

V. Conclusions

A low bandwidth hardware-in-the-loop (HIL) test of a hardware station 3 pressure (P3) smart sensor was

conducted on the distributed engine control system simulator (DECSS) real-time computing platform with the

C-MAPSS40k engine model. The development of this HIL test demonstrates a process for replacing an individual

software component in a large scale system simulation with its functional hardware equivalent. The results of the HIL

simulation show that a hardware P3 smart sensor can be used successfully as the Ps3 sensor for closed loop control

in a C-MAPSS40k engine system. Further, a preliminary ancillary model for generating a high bandwidth P3 signal

has been described for use in future work. In this model, it is assumed that the pressure signal components due to high-

pressure compressor (HPC) blades passing by a sensor location are a nonlinear function of the static pressure at that

Figure 6. Plots showing PLA profile and resulting fuel flow,

Ps3 and magnitude of the BPPD signal, and actual and sensed

HPC surge margin. Ps3 is shown because it is a sensed engine

variable that helps show the scale of the BPPD signal.

0 5 10 15
40

50

60

70

80

P
L
A

 [
d
e
g
]

0 5 10 15
0

200

400

P
s
3
 [

p
s
i]

0 5 10 15
0

20

40

time [s]H
P

C
 S

u
rg

e
 M

a
rg

in
 [

%
]

0 5 10 15
0

1

2

3

4

W
f

[l
b
/s

]

0 5 10 15
0

0.5

1

B
P

P
D

 [
p
s
i]

actual

sensed

American Institute of Aeronautics and Astronautics

11

location (Ps3), the HPC surge margin, and the speed of the HPC. This model was used in a software-only simulation

test where C-MAPSS40k was augmented with this high-bandwidth P3 signal model, a blade passing pressure

disturbance (BPPD) smart sensor model, a HPC surge margin observer model, and a HPC surge margin limit regulator.

Results from this test demonstrate that closed-loop control of HPC surge margin can be achieved with these

components, and these results provide a baseline with which to compare future HIL tests of the same active surge

control concepts. Future work directions are discussed—these include development of more realistic surge modeling

and control techniques, as well as other applications of these HIL testing tools.

Acknowledgments

Funding and resources for this work are provided by NASA Glenn Research Center and the Transformative

Aeronautics Concepts Program, Transformational Tools and Technologies Project. Also, the authors would like to

thank Sporian Microsystems for providing hardware, documentation, and support outside the scope of their contracted

work to enable the HIL test published in this paper.

References
1Culley, D., “Transition in Gas Turbine Control System Architecture: Modular, Distributed, and Embedded,” ASME Turbo

Expo 2010: Power for Land, Sea, and Air, Vol. 3, Glasgow, Scotland, United Kingdom, June 2010, pp. 287–297.
2Bright, M. M., Culley, D. E., Braunscheidel, E. P., and Welch, G. E., “Closed Loop Active Flow Separation Detection and

Control in a Multistage Compressor,” 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2005, pp. 1039-1050.
3Wadia, A. R., Christensen, D., and Prasad, J. V. R, “Compressor Stability Management in Aircraft Engines,” Proceedings of

the 25th Congress of the International Council of the Aeronautical Sciences, Hamburg, Germany, 2006.
4May, R.D., Csank, J., Lavelle, T.M., Litt, J.S., and T.H., Guo, “A High-Fidelity Simulation of a Generic Commercial Aircraft

Engine and Controller,” NASA/TM-2010-216810, October 2010.
5Zinnecker, A. M., Culley, D. E., and Aretskin-Hariton, E. D., “A Modular Framework for Modeling Hardware Elements in

Distributed Engine Control Systems,” Proceedings of the 50th AIAA Joint Propulsion Conference, Cleveland, Ohio, USA, 2014.
6Abdel-Fattah, A. M. and Vivian, A. S., “Development of the Larzac Engine Rig for Compressor Stall Testing,” Defense

Science and Technology Organization, Victoria, Australia, DSTO-RR-0377, 2010.
7Csank, J., May, R.D., Litt, J.S., and Guo, T.H., “Control Design for a Generic Commercial Aircraft Engine,” 2010 AIAA Joint

Propulsion Conference, Nashville, Tennessee, 2010.

